1.   Chemical Engineering – CH

Process  Calculations  and  Thermodynamics:
Laws  of  conservation  of  mass  and  energy;  use  of  tie components;  recycle,  bypass  and  purge  calculations;  degree  of  freedom  analysis.  First  and  Second  laws  of thermodynamics. First  law  application  to  close  and open  systems. Second  law  and Entropy Thermodynamic properties of pure  substances:  equation of  state  and departure  function, properties of mixtures: partial molar properties,  fugacity, excess properties and activity coefficients; phase equilibria: predicting VLE of  systems; chemical reaction equilibria.

Fluid Mechanics and Mechanical Operations: Fluid statics, Newtonian and non-Newtonian fluids, Bernoulli equation, Macroscopic  friction  factors,  energy  balance,  dimensional  analysis,  shell  balances,  flow  through pipeline systems, flow meters, pumps and compressors, packed and fluidized beds, elementary boundary layer theory, size reduction and size separation; free and hindered settling; centrifuge and cyclones;  thickening and classification, filtration, mixing and agitation; conveying of solids.

Heat  Transfer: Conduction,  convection  and  radiation,  heat  transfer  coefficients,  steady  and  unsteady  heat conduction, boiling, condensation and evaporation; types of heat exchangers and evaporators and their design.

Mass Transfer: Fick’s  laws, molecular  diffusion  in  fluids, mass  transfer  coefficients,  film,  penetration  and surface  renewal  theories; momentum, heat  and mass  transfer analogies;  stagewise and continuous  contacting and  stage efficiencies; HTU & NTU concepts design and operation of equipment  for distillation, absorption, leaching, liquid-liquid extraction, drying, humidification, dehumidification and adsorption.

Chemical Reaction Engineering: Theories of reaction rates; kinetics of homogeneous reactions, interpretation of kinetic data, single and multiple  reactions  in  ideal  reactors, non-ideal  reactors; residence  time distribution, single parameter model; non-isothermal reactors; kinetics of heterogeneous catalytic reactions; diffusion effects in catalysis.

Instrumentation  and  Process  Control: Measurement  of  process  variables;  sensors,  transducers  and  their dynamics,  transfer  functions  and  dynamic  responses  of  simple  systems,  process  reaction  curve,  controller modes (P, PI, and PID); control valves; analysis of closed loop systems including stability, frequency response and controller tuning, cascade, feed forward control.

Plant  Design  and  Economics: Process  design  and  sizing  of  chemical  engineering  equipment  such  as compressors,  heat  exchangers,  multistage  contactors;  principles  of  process  economics  and  cost  estimation including total annualized cost, cost indexes, rate of return, payback period, discounted cash flow, optimization in design.

Chemical Technology: Inorganic chemical  industries; sulfuric acid, NaOH,  fertilizers  (Ammonia, Urea, SSP and  TSP);  natural  products  industries  (Pulp  and  Paper,  Sugar,  Oil,  and  Fats);  petroleum  refining  and petrochemicals; polymerization industries; polyethylene, polypropylene, PVC and polyester synthetic fibers.

2.   Computer Science and Engineering – CS

Theory  of  Computation: Regular  languages  and  finite  automata,  Context  free  languages  and  Push-down automata, Recursively enumerable sets and Turing machines, Undecidability; NP-completeness.

Digital Logic: Logic functions, Minimization, Design and synthesis of combinational and sequential circuits; Number representation and computer arithmetic (fixed and floating point).

Computer Organization and Architecture: Machine instructions and addressing modes, ALU and data-path, CPU control design, Memory interface, I/O interface (Interrupt and DMA mode), Instruction pipelining, Cache and main memory, Secondary storage.

Programming  and Data  Structures: Programming  in C;  Functions, Recursion,  Parameter  passing,  Scope, Binding; Abstract data types, Arrays, Stacks, Queues, Linked Lists, Trees, Binary search trees, Binary heaps. Algorithms: Analysis, Asymptotic notation, Notions of  space  and  time complexity, Worst and average case analysis; Design: Greedy  approach, Dynamic  programming, Divide-and-conquer; Tree  and  graph  traversals, Connected components, Spanning trees, Shortest paths; Hashing, Sorting, Searching.

Compiler Design: Lexical analysis, Parsing, Syntax directed translation, Runtime environments, Intermediate and target code generation, Basics of code optimization.

Operating  System: Processes,  Threads,  Inter-process  communication,  Concurrency,  Synchronization, Deadlock, CPU scheduling, Memory management and virtual memory, File systems,  I/O systems, Protection and security.

Databases: ER-model,  Relational  model  (relational  algebra,  tuple  calculus),  Database  design  (integrity constraints, normal forms), Query languages (SQL), File structures (sequential files, indexing, B and B+ trees), Transactions and concurrency control.

Computer  Networks: ISO/OSI  stack,  LAN  technologies  (Ethernet,  Token  ring),  Flow  and  error  control techniques, Routing algorithms, Congestion control, TCP/UDP and sockets, IP(v4), Application layer protocols (icmp, dns, smtp, pop, ftp, http); Basic concepts of hubs, switches, gateways, and routers.

3.   Electronics and Communication Engineering – EC

Network graphs: matrices associated with graphs; incidence, fundamental cut set and fundamental circuit matrices. Solution methods: nodal and mesh analysis. Network  theorems: superposition, Thevenin and Norton’s maximum power transfer, Wye-Delta transformation. Steady state sinusoidal analysis using phasors. Linear  constant  coefficient  differential  equations;  time  domain  analysis  of  simple RLC  circuits,  Solution  of network  equations  using  Laplace  transform:  frequency  domain  analysis  of  RLC  circuits.  2-port  network parameters: driving point and transfer functions. State equations for networks.

Electronic  Devices: Energy  bands  in  silicon,  intrinsic  and  extrinsic  silicon.  Carrier  transport  in  silicon: diffusion current, drift current, mobility, and resistivity. Generation and recombination of carriers. p-n junction diode,  Zener  diode,  tunnel  diode,  BJT,  JFET, MOS  capacitor, MOSFET,  LED,  p-I-n  and  avalanche  photo diode, Basics of LASERs. Device technology: integrated circuits fabrication process, oxidation, diffusion, ion implantation, photolithography, n-tub, p-tub and twin-tub CMOS process.

Analog Circuits: Small  Signal  Equivalent  circuits  of  diodes, BJTs, MOSFETs  and  analog CMOS.  Simple diode  circuits,  clipping,  clamping,  rectifier.  Biasing  and  bias  stability  of  transistor  and  FET  amplifiers. Amplifiers:  single-and multi-stage, differential  and operational,  feedback, and power. Frequency  response of amplifiers. Simple op-amp circuits. Filters. Sinusoidal oscillators; criterion for oscillation; single-transistor and op-amp configurations. Function generators and wave-shaping circuits, 555 Timers. Power supplies.

Digital Circuits: Boolean algebra, minimization of Boolean  functions;  logic gates; digital  IC  families  (DTL, TTL, ECL, MOS, CMOS). Combinatorial circuits: arithmetic circuits, code converters, multiplexers, decoders, PROMs  and PLAs.  Sequential  circuits:  latches  and  flip-flops,  counters  and  shift-registers.  Sample  and  hold circuits, ADCs, DACs. Semiconductor memories. Microprocessor(8085): architecture, programming, memory and I/O interfacing.

Signals  and  Systems: Definitions  and  properties  of  Laplace  transform,  continuous-time  and  discrete-time Fourier  series,  continuous-time  and  discrete-time  Fourier  Transform, DFT  and  FFT,  z-transform.  Sampling theorem.  Linear  Time-Invariant  (LTI)  Systems:  definitions  and  properties;  causality,  stability,  impulse response, convolution, poles and zeros, parallel and cascade structure, frequency response, group delay, phase delay. Signal transmission through LTI systems.

Control  Systems: Basic  control  system  components;  block  diagrammatic  description,  reduction  of  block diagrams. Open  loop and closed  loop  (feedback) systems and stability analysis of  these systems. Signal  flow graphs  and  their use  in determining  transfer  functions of  systems;  transient  and  steady  state  analysis of LTI control  systems  and  frequency  response.  Tools  and  techniques  for  LTI  control  system  analysis:  root  loci, Routh-Hurwitz  criterion,  Bode  and  Nyquist  plots.  Control  system  compensators:  elements  of  lead  and  lag compensation,  elements  of  Proportional-Integral-Derivative  (PID)  control.  State  variable  representation  and solution of state equation of LTI control systems.

Communications: Random  signals  and  noise:  probability,  random  variables,  probability  density  function, autocorrelation, power spectral density. Analog communication systems: amplitude and angle modulation and demodulation systems, spectral analysis of these operations, superheterodyne receivers; elements of hardware, realizations  of  analog  communication  systems;  signal-to-noise  ratio  (SNR)  calculations  for  amplitude modulation  (AM)  and  frequency  modulation  (FM)  for  low  noise  conditions.  Fundamentals  of  information theory  and  channel  capacity  theorem.  Digital  communication  systems:  pulse  code  modulation  (PCM), differential pulse code modulation (DPCM), digital modulation schemes: amplitude, phase and frequency shift keying schemes (ASK, PSK, FSK), matched filter receivers, bandwidth consideration and probability of error calculations for these schemes. Basics of TDMA, FDMA and CDMA and GSM.

Electromagnetics: Elements of vector calculus: divergence and curl; Gauss’ and Stokes’ theorems, Maxwell’s equations: differential and integral forms. Wave equation, Poynting vector. Plane waves: propagation through various  media;  reflection  and  refraction;  phase  and  group  velocity;  skin  depth.  Transmission  lines: characteristic  impedance;  impedance  transformation;  Smith  chart;  impedance matching;  S  parameters,  pulse excitation.  Waveguides:  modes  in  rectangular  waveguides;  boundary  conditions;  cut-off  frequencies; dispersion  relations.  Basics  of  propagation  in  dielectric  waveguide  and  optical  fibers.  Basics  of  Antennas: Dipole antennas; radiation pattern; antenna gain.

4.   Electrical Engineering – EE

Electric Circuits and Fields: Network graph, KCL, KVL, node and mesh analysis,  transient  response of dc and  ac  networks;  sinusoidal  steady-state  analysis,  resonance,  basic  filter  concepts;  ideal  current  and  voltage sources, Thevenin’s, Norton’s and Superposition and Maximum Power Transfer theorems, two-port networks, three phase circuits; Gauss Theorem, electric field and potential due to point, line, plane and spherical charge distributions; Ampere’s and Biot-Savart’s laws; inductance; dielectrics; capacitance.

Signals and Systems: Representation of continuous and discrete-time signals; shifting and scaling operations; linear, time-invariant and causal systems; Fourier series representation of continuous periodic signals; sampling theorem; Fourier, Laplace and Z transforms.

Electrical Machines: Single  phase  transformer  –  equivalent  circuit,  phasor  diagram,  tests,  regulation  and efficiency;  three  phase  transformers  –  connections,  parallel  operation;  auto-transformer;  energy  conversion principles;  DC  machines  –  types,  windings,  generator  characteristics,  armature  reaction  and  commutation, starting  and  speed  control  of  motors;  three  phase  induction  motors  –  principles,  types,  performance characteristics,  starting  and  speed  control;  single  phase  induction  motors;  synchronous  machines  – performance,  regulation and parallel operation of generators, motor  starting, characteristics and applications; servo and stepper motors.

Power  Systems: Basic  power  generation  concepts;  transmission  line  models  and  performance;  cable performance, insulation; corona and radio interference; distribution systems; per-unit quantities; bus impedance and admittance matrices; load flow; voltage control; power factor correction; economic operation; symmetrical components;  fault  analysis;  principles  of  over-current,  differential  and  distance  protection;  solid  state  relays and digital protection; circuit breakers; system stability concepts, swing curves and equal area criterion; HVDC transmission and FACTS concepts.

Control  Systems: Principles  of  feedback;  transfer  function;  block  diagrams;  steady-state  errors; Routh  and Niquist  techniques;  Bode  plots;  root  loci;  lag,  lead  and  lead-lag  compensation;  state  space  model;  state transition matrix, controllability and observability.  Electrical and Electronic Measurements: Bridges and potentiometers; PMMC, moving  iron, dynamometer and induction type instruments; measurement of voltage, current, power, energy and power factor; instrument transformers;  digital  voltmeters  and  multimeters;  phase,  time  and  frequency  measurement;  Q-meters; oscilloscopes; potentiometric recorders; error analysis.

Analog and Digital Electronics: Characteristics of diodes, BJT, FET; amplifiers – biasing, equivalent circuit and  frequency  response;  oscillators  and  feedback  amplifiers;  operational  amplifiers  –  characteristics  and applications; simple active filters; VCOs and  timers; combinational and sequential  logic circuits; multiplexer; Schmitt  trigger;  multi-vibrators;  sample  and  hold  circuits;  A/D  and  D/A  converters;  8-bit  microprocessor basics, architecture, programming and interfacing.

Power Electronics and Drives: Semiconductor power diodes, transistors, thyristors, triacs, GTOs, MOSFETs and  IGBTs  –  static  characteristics  and  principles  of  operation;  triggering  circuits;  phase  control  rectifiers; bridge converters – fully controlled and half controlled; principles of choppers and inverters; basis concepts of adjustable speed dc and ac drives.

5.   Mechanical Engineering – ME

Engineering Mechanics:
Free body diagrams and equilibrium;  trusses  and  frames; virtual work; kinematics
and dynamics of particles and of  rigid bodies  in plane motion,  including  impulse and momentum  (linear and
angular) and energy formulations; impact.

Strength  of Materials: Stress  and  strain,  stress-strain  relationship  and  elastic  constants, Mohr’s  circle  for
plane  stress  and  plane  strain,  thin  cylinders;  shear  force  and  bending moment  diagrams;  bending  and  shear
stresses;  deflection  of  beams;  torsion  of  circular  shafts;  Euler’s  theory  of  columns;  strain  energy methods;
thermal stresses.

Theory  of  Machines: Displacement,  velocity  and  acceleration  analysis  of  plane  mechanisms;  dynamic analysis of slider-crank mechanism; gear trains; flywheels.

Vibrations: Free  and  forced  vibration  of  single  degree  of  freedom  systems;  effect  of  damping;  vibration isolation; resonance, critical speeds of shafts.

Design: Design  for  static  and  dynamic  loading;  failure  theories;  fatigue  strength  and  the  S-N  diagram; principles  of  the  design  of machine  elements  such  as  bolted,  riveted  and welded  joints,  shafts,  spur  gears, rolling and sliding contact bearings, brakes and clutches.

Fluid Mechanics: Fluid  properties;  fluid  statics,  manometry,  buoyancy;  control-volume  analysis  of  mass, momentum  and  energy;  fluid  acceleration;  differential  equations  of  continuity  and momentum;  Bernoulli’s equation;  viscous  flow  of  incompressible  fluids;  boundary  layer;  elementary  turbulent  flow;  flow  through pipes, head losses in pipes, bends etc.

Heat-Transfer: Modes  of  heat  transfer;  one  dimensional  heat  conduction,  resistance  concept,  electrical analogy, unsteady heat conduction, fins; dimensionless parameters in free and forced convective heat transfer, various correlations for heat transfer in flow over flat plates and through pipes; thermal boundary layer; effect of turbulence; radiative heat transfer, black and grey surfaces, shape factors, network analysis; heat exchanger performance, LMTD and NTU methods.

Thermodynamics: Zeroth, First and Second  laws of  thermodynamics;  thermodynamic system and processes; Carnot cycle.  irreversibility and availability; behaviour of  ideal and  real gases, properties of pure substances, calculation of work and heat in ideal processes; analysis of thermodynamic cycles related to energy conversion.

Applications: Power Engineering: Steam Tables, Rankine, Brayton cycles with  regeneration and reheat.  I.C. Engines: air-standard Otto, Diesel cycles. Refrigeration and air-conditioning: Vapour refrigeration cycle, heat pumps, gas refrigeration, Reverse Brayton cycle; moist air: psychrometric chart, basic psychrometric processes. Turbomachinery:  Pelton-wheel,  Francis  and  Kaplan  turbines —  impulse  and  reaction  principles,  velocity diagrams.

Engineering  Materials: Structure  and  properties  of  engineering  materials,  heat  treatment,  stress-strain diagrams for engineering materials.

Metal  Casting: Design  of  patterns, moulds  and  cores;  solidification  and  cooling;  riser  and  gating  design, design considerations.

Forming: Plastic  deformation  and  yield  criteria;  fundamentals  of  hot  and  cold  working  processes;  load estimation  for  bulk  (forging,  rolling,  extrusion,  drawing)  and  sheet  (shearing, deep  drawing, bending) metal forming processes; principles of powder metallurgy.

Joining: Physics of welding, brazing and soldering; adhesive bonding; design considerations in welding.

Machining  and Machine Tool Operations: Mechanics  of machining,  single  and multi-point  cutting  tools, tool  geometry  and  materials,  tool  life  and  wear;  economics  of  machining;  principles  of  non-traditional machining processes; principles of work holding, principles of design of jigs and fixtures Metrology and Inspection: Limits, fits and tolerances; linear and angular measurements; comparators; gauge design;  interferometry;  form  and  finish measurement;  alignment  and  testing methods;  tolerance  analysis  in manufacturing and assembly.

Computer Integrated Manufacturing: Basic concepts of CAD/CAM and their integration tools.

Production Planning and Control: Forecasting models, aggregate production planning, scheduling, materials requirement planning.

Inventory Control: Deterministic and probabilistic models; safety stock inventory control systems.

Operations Research: Linear programming, simplex and duplex method, transportation, assignment, network flow models, simple queuing models, PERT and CPM.



  1. i have confusion in difference b/w elect. engg. and elect.&electronics.engg. i.e. b/w ee & eee
    at maxm. place i see the syllabus of only elect, engg. then there i m elligible or not ?

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.