AIEEE 2010 Physics Held on (25-04-2010)

PART A - PHYSICS

Directions: Questions number 1-3 are based on the following paragraph.

> An initially parallel cylindrical beam travels in a medium of refractive index $\mu(I) = \mu_0 + \mu_2 I, \ \ \text{where} \ \mu_0 \ \text{and} \ \mu_2 \ \text{are positive}$ constants and I is the intensity of the light beam. The intensity of the beam is decreasing with increasing radius.

- The initial shape of the wavefront of the 1. beam is
 - planar
 - convex
 - (3)concave
 - convex near the axis and concave near the periphery
- 2. The speed of light in the medium is
 - maximum on the axis of the beam
 - minimum on the axis of the beam
 - the same everywhere in the beam
 - directly proportional to the intensity I
- 3. As the beam enters the medium, it will
 - (1) travel as a cylindrical beam
 - diverge

A ID--- 0

- (3) converge
- (4) diverge near the axis and converge near the periphery

Directions: Questions number 4-5 are based on the following paragraph.

> A nucleus of mass M + Am is at rest and decays into two daughter nuclei of equal mass $\frac{M}{2}$ each. Speed of light is c.

4. The speed of daughter nuclei is

(1)
$$c \sqrt{\frac{\Delta m}{M + \Delta m}}$$

(2)
$$c \frac{\Delta m}{M + \Delta m}$$

(4)
$$c \sqrt{\frac{\Delta m}{M}}$$

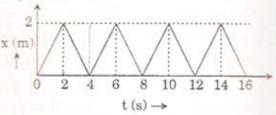
- 5. The binding energy per nucleon for the parent nucleus is E1 and that for the daughter nuclei is E2. Then
 - (1) $E_1 = 2E_2$
 - (2) $E_2 = 2E_1$
 - (3) $E_1 > E_2$

 Ω

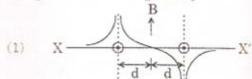
Directions: Questions number 6-7 contain 8.

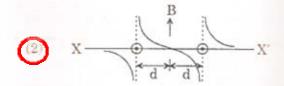
Statement-1 and Statement-2. Of the four choices given after the statements, choose the one that best describes the two statements.

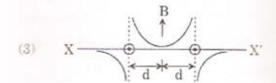
6. Statement-1: When ultraviolet light is incident on a photocell, its stopping potential is V₀ and the maximum kinetic energy of the photoelectrons is K_{max}. When the ultraviolet light is replaced by X-rays, both V₀ and K_{max} increase.

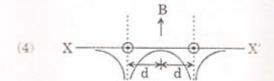

Statement-2: Photoelectrons are emitted with speeds ranging from zero to a maximum value because of the range of frequencies present in the incident light.

- (1) Statement-1 is true, Statement-2 is 9. false.
- (2) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation of Statement-1.
- (3) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1.
- (4) Statement-1 is false, Statement-2 is true.
- Statement-1: Two particles moving in the same direction do not lose. all their energy in a completely inelastic collision.

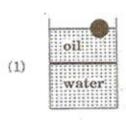

Statement-2: Principle of conservation of momentum holds true for all kinds of collisions.

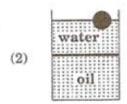

- (N Statement-1 is true, Statement-2 is false.
- (2) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation of Statement-1.
- (3) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1.
- (4) Statement-1 is false, Statement-2 is true.

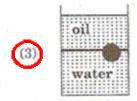

8. The figure shows the position - time (x-1) graph of one-dimensional motion of a body of mass 0.4 kg. The magnitude of each impulse is

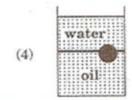


- (1) 0.2 Ns
- (2) 0.4 Ns
- (3) 0.8 Ns (4) 1.6 Ns
- apart. They carry steady equal currents flowing out of the plane of the paper as shown. The variation of the magnetic field along the line XX' is given by

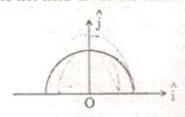


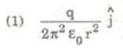




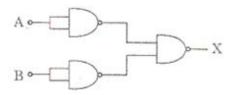


10. A ball is made of a material of density ρ where $\rho_{\rm oil} < \rho < \rho_{\rm water}$ with $\rho_{\rm oil}$ and $\rho_{\rm water}$ representing the densities of oil and water, respectively. The oil and water are immiscible. If the above ball is in equilibrium in a mixture of this oil and water, which of the following pictures represents its equilibrium position?





11. A thin semi-circular ring of radius r has a positive charge q distributed uniformly over it. The net field E at the centre O is

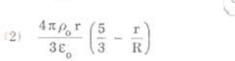

$$(2) \quad \frac{q}{4\pi^2 \varepsilon_0 r^2} \hat{j}$$

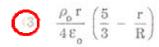
$$(3) - \frac{q}{4\pi^2 \varepsilon_0 r^2} j$$

$$(4) - \frac{q}{2\pi^2 \varepsilon_0 r^2} j$$

- 12. A diatomic ideal gas is used in a Carnot engine as the working substance. If during the adiabatic expansion part of the cycle the volume of the gas increases from V to 32 V, the efficiency of the engine is
 - (1) 0.25
 - (2) 0-5
 - (3) 0.75
 - (4) 0.99
- The respective number of significant figures for the numbers 23-023, 0-0003 and 2-1 x 10⁻³ are
 - (1) 4, 4, 2
 - (2) 5, 1, 2
 - (3) 5, 1, 5
 - (4) 5, 5, 2

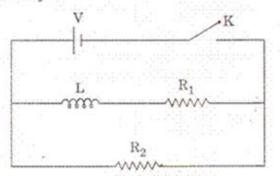
The combination of gates shown below 17. yields


- (1) NAND gate
- (2) OR gate
- (3) NOT gate
- (4) XOR gate
- 15. If a source of power 4 kW produces 10²⁰ photons/second, the radiation belongs to a part of the spectrum called
 - (1) y-rays
 - (2 X-rays
 - (3) ultraviolet ravs
 - (4) microwaves
- 16. A radioactive nucleus (initial mass number A and atomic number Z) emits 3 α-particles and 2 positrons. The ratio of number of neutrons to that of protons in the final nucleus will be
 - (1) $\frac{A-Z-4}{Z-2}$
 - (2) $\frac{A-Z-8}{Z-4}$
 - $(3) \quad \frac{A-Z-3}{Z-8}$
 - (4) $\frac{A-Z-12}{Z-4}$


 Let there be a spherically symmetric charge distribution with charge density varying as

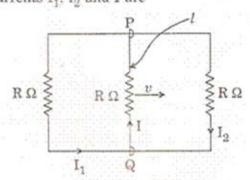
$$\rho(r) = \rho_0 \left(\frac{5}{4} - \frac{r}{R} \right)$$
 upto $r = R$, and $\rho(r) = 0$

for r > R, where r is the distance from the origin. The electric field at a distance r (r < R) from the origin is given by


$$(1) \quad \frac{\rho_o\,r}{3\epsilon_o}\left(\frac{5}{4}\,-\,\frac{r}{R}\right)$$

- $(4) \quad \frac{4\,\rho_{\rm o}\,r}{3\,\epsilon_{\rm o}}\left(\frac{5}{4}\,-\,\frac{\rm r}{\rm R}\right)$
- 18. In a series LCR circuit R = 200 Ω and the voltage and the frequency of the main supply is 220 V and 50 Hz respectively. On taking out the capacitance from the circuit the current lags behind the voltage by 30°. On taking out the inductor from the circuit the current leads the voltage by 30°. The power dissipated in the LCR circuit is
 - (1) 242 W
 - (2) 305 W
 - (3) 210 W
 - (4) Zero W

19. In the circuit shown below, the key K is closed at t = 0. The current through the battery is

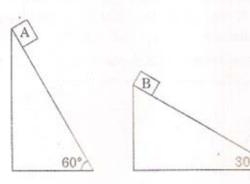


- (1) $\frac{V(R_1 + R_2)}{R_1 R_2}$ at t = 0 and $\frac{V}{R_2}$ at $t = \infty$
- (2) $\frac{VR_1R_2}{\sqrt{R_1^2+R_2^2}}$ at t=0 and $\frac{V}{R_2}$ at $t=\infty$
- (3) $\frac{V}{R_2}$ at t = 0 and $\frac{V(R_1 + R_2)}{R_1 R_2}$ at t = ∞
- (4) $\frac{V}{R_2}$ at t = 0 and $\frac{VR_1R_2}{\sqrt{R_1^2 + R_2^2}}$ at $t = \infty$
- 20. A particle is moving with velocity $\overrightarrow{v} = K(y\hat{i} + x\hat{j})$, where K is a constant. The general equation for its path is
 - (1) $y^2 = x^2 + constant$
 - (2) $y = x^2 + constant$
 - (3) $y^2 = x + constant$
 - (4) xy = constant

Let C be the capacitance of a capacitor discharging through a resistor R. Suppose t_1 is the time taken for the energy stored in the capacitor to reduce to half its initial value and t_2 is the time taken for the charge to reduce to one-fourth its initial value. Then the ratio t_1/t_2 will be

- (1) 2
- (2) 1
- (3) $\frac{1}{2}$
- (4) ¹/₄

A rectangular loop has a sliding connector PQ of length *l* and resistance R Ω and it is moving with a speed *v* as shown. The set-up is placed in a uniform magnetic field going into the plane of the paper. The three currents I₁, I₂ and I are


- (1) $I_1 = I_2 = \frac{Blv}{6R}$, $I = \frac{Blv}{3R}$
- (2) $I_1 = -I_2 = \frac{Blv}{R}$, $I = \frac{2Blv}{R}$
- (3) $I_1 = I_2 = \frac{Blv}{3R}$, $I = \frac{2Blv}{3R}$
- (4) $I_1 = I_2 = I = \frac{B l v}{R}$

23. The equation of a wave on a string of 25. linear mass density 0.04 kg m⁻¹ is given by

$$y = 0.02(m) \sin \left[2\pi \left(\frac{t}{0.04(s)} - \frac{x}{0.50(m)} \right) \right].$$

The tension in the string is

- (1) 6·25 N
- (2) 4·0 N
- (3) 12·5 N
- (4) 0.5 N
- 24. Two fixed frictionless inclined planes making an angle 30° and 60° with the vertical are shown in the figure. Two blocks A and B are placed on the two planes. What is the relative vertical acceleration of A with respect to B?

- (1) 4.9 ms⁻² in vertical direction
- (2) 4.9 ms⁻² in horizontal direction
- (3) 9.8 ms⁻² in vertical direction
- (4) Zero

25. For a particle in uniform circular motion, the acceleration a at a point P (R, θ) on the circle of radius R is (Here θ is measured from the x-axis)

(1)
$$\frac{v^2}{R} \hat{i} + \frac{v^2}{R} \hat{j}$$

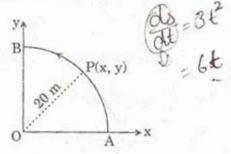
(2)
$$-\frac{v^2}{R}\cos\theta \hat{i} + \frac{v^2}{R}\sin\theta \hat{j}$$

(3)
$$-\frac{v^2}{R} \sin \theta \hat{i} + \frac{v^2}{R} \cos \theta \hat{j}$$

$$(4) - \frac{v^2}{R} \cos \theta \hat{i} - \frac{v^2}{R} \sin \theta \hat{j}$$

26. A small particle of mass m is projected at an angle 0 with the x-axis with an initial velocity v_0 in the x-y plane as shown in the figure. At a time $t < \frac{v_0 \sin \theta}{g}$, the angular momentum of the particle is

- (1) $\frac{1}{2} \operatorname{mg} v_0 t^2 \cos \theta$
- (2) $\text{mg } v_0 \text{ t}^2 \cos \theta \hat{j}$
- (3) mg v_0 t cos θ \hat{k}
- (4) $-\frac{1}{2} \operatorname{mg} v_0 t^2 \cos \theta \hat{k}$


where î, ĵ and k are unit vectors along x, y and z-axis respectively.

identical charged spheres suspended by strings of equal lengths. The strings make an angle of 30° with each other. When suspended in a liquid of density 0.8 g cm-3, the angle remains the same. If density of the material of the sphere is 1.6 g cm⁻³, the dielectric constant of the liquid is

- (2)
- (3)
- (4)

A point P moves in counter-clockwise direction on a circular path as shown in the figure. The movement of 'P' is such that it sweeps out a length $s = t^3 + 5$, where s is in metres and t is in seconds. The radius of the path is 20 m. The acceleration of P' when t = 2 s is nearly

- 14 m/s²
- (2) 13 m/s²
- (3) 12 m/s²
- (4) 7-2 m/s²

The potential energy function for the force between two atoms in a diatomic molecule is approximately given by $U(x) = \frac{a}{x^{12}} - \frac{b}{x^6}$, where a and b are constants and x is the distance between the atoms. If the

dissociation energy of the molecule is $D = [U(x = \infty) - U_{at equilibrium}], D is$

$$(1) \quad \frac{b^2}{6a}$$

(2)
$$\frac{b^2}{2a}$$

(3)
$$\frac{b^2}{12a}$$

Two conductors have the same resistance at 0 °C but their temperature coefficients of resistance are α_1 and α_2 . The respective temperature coefficients of their series and parallel combinations are nearly

$$(1) \frac{\alpha_1 + \alpha_2}{2}, \frac{\alpha_1 + \alpha_2}{2}$$

(2)
$$\frac{\alpha_1 + \alpha_2}{2}$$
, $\alpha_1 + \alpha_2$

(3)
$$\alpha_1 + \alpha_2, \frac{\alpha_1 + \alpha_2}{2}$$

(4)
$$\alpha_1 + \alpha_2$$
, $\frac{\alpha_1 \alpha_2}{\alpha_1 + \alpha_2}$